Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(12): e0166948, 2016.
Article in English | MEDLINE | ID: mdl-27935997

ABSTRACT

Many germ line diseases stem from a relatively minor disturbance in mutant protein endoplasmic reticulum (ER) 3D assembly. Chaperones are recruited which, on failure to correct folding, sort the mutant for retrotranslocation and cytosolic proteasomal degradation (ER-associated degradation-ERAD), to initiate/exacerbate deficiency-disease symptoms. Several bacterial (and plant) subunit toxins, retrograde transport to the ER after initial cell surface receptor binding/internalization. The A subunit has evolved to mimic a misfolded protein and hijack the ERAD membrane translocon (dislocon), to effect cytosolic access and cytopathology. We show such toxins compete for ERAD to rescue endogenous misfolded proteins. Cholera toxin or verotoxin (Shiga toxin) containing genetically inactivated (± an N-terminal polyleucine tail) A subunit can, within 2-4 hrs, temporarily increase F508delCFTR protein, the major cystic fibrosis (CF) mutant (5-10x), F508delCFTR Golgi maturation (<10x), cell surface expression (20x) and chloride transport (2x) in F508del CFTR transfected cells and patient-derived F508delCFTR bronchiolar epithelia, without apparent cytopathology. These toxoids also increase glucocerobrosidase (GCC) in N370SGCC Gaucher Disease fibroblasts (3x), another ERAD-exacerbated misfiling disease. We identify a new, potentially benign approach to the treatment of certain genetic protein misfolding diseases.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/drug effects , Endoplasmic Reticulum/drug effects , Protein Folding/drug effects , Toxins, Biological/pharmacology , Blotting, Western , Cholera Toxin/pharmacology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/prevention & control , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Microscopy, Fluorescence , Models, Biological , Mutation , Protein Transport/drug effects , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/prevention & control , Shiga Toxins/pharmacology , Toxins, Biological/classification
2.
J Allergy Clin Immunol ; 125(6): 1237-1244.e2, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20513521

ABSTRACT

BACKGROUND: Increased eosinophil levels have been linked to airway inflammation and asthma exacerbations. IL-5 is responsible for eosinophil differentiation, proliferation, and activation; IL-5 receptors are expressed on eosinophils and their progenitors, and targeting such receptors induces eosinophil apoptosis. OBJECTIVE: To evaluate the safety profile, pharmacokinetics, and pharmacodynamics of MEDI-563, a humanized mAb targeting the IL-5 receptor alpha chain. METHODS: Single, escalating, intravenous doses (0.0003-3 mg/kg) of MEDI-563 were administered to subjects with mild atopic asthma (n = 44) over approximately 3 to 30 minutes in this open-label study. Pulmonary function, symptom scores, adverse events, MEDI-563 pharmacokinetics, and levels of C-reactive protein (CRP), IL-6, eosinophil cationic protein (ECP), and eosinophils were evaluated. RESULTS: Mean peripheral blood (PB) eosinophil levels decreased in a dose-dependent fashion (baseline +/- SD, 0.27 +/- 0.2 x 10(3)/microL; 24 hours postdose, 0.01 +/- 0.0 x 10(3)/microL); 94.0% of subjects receiving >or=0.03 mg/kg exhibited levels between 0.00 x 10(3)/microL and 0.01 x 10(3)/microL. Eosinopenia lasted at least 8 or 12 weeks with doses of 0.03 to 0.1 and 0.3 to 3 mg/kg, respectively. ECP levels were reduced from 21.4 +/- 17.2 microg/L (baseline) to 10.3 +/- 7.0 microg/L (24 hours postdose). The most frequently reported adverse events were reduced white blood cell counts (34.1%), nasopharyngitis (27.3%), and increased blood creatine phosphokinase (25.0%). Mean C-reactive protein levels increased approximately 5.5-fold at 24 hours postdose but returned to baseline by study end; mean IL-6 levels increased approximately 3.9-fold to 4.7-fold at 6 to 12 hours postdose, respectively. Pharmacokinetic activity was dose proportional at doses of 0.03 to 3 mg/kg. CONCLUSION: Single escalating doses of MEDI-563 had an acceptable safety profile and resulted in marked reduction of PB eosinophil counts within 24 hours after dosing.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Asthma/immunology , Asthma/therapy , Eosinophils/drug effects , Recombinant Fusion Proteins/administration & dosage , Adolescent , Adult , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Apoptosis/drug effects , Apoptosis/immunology , Asthma/pathology , Asthma/physiopathology , C-Reactive Protein/metabolism , Cell Count , Eosinophil Cationic Protein/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Eosinophils/pathology , Female , Follow-Up Studies , Humans , Immunotherapy , Interleukin-5 Receptor alpha Subunit/immunology , Interleukin-6/metabolism , Lymphopenia/etiology , Male , Middle Aged , Recombinant Fusion Proteins/adverse effects , Recombinant Fusion Proteins/pharmacokinetics , Respiratory Function Tests
3.
J Allergy Clin Immunol ; 125(6): 1344-1353.e2, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20513525

ABSTRACT

BACKGROUND: Peripheral blood eosinophilia and lung mucosal eosinophil infiltration are hallmarks of bronchial asthma. IL-5 is a critical cytokine for eosinophil maturation, survival, and mobilization. Attempts to target eosinophils for the treatment of asthma by means of IL-5 neutralization have only resulted in partial removal of airway eosinophils, and this warrants the development of more effective interventions to further explore the role of eosinophils in the clinical expression of asthma. OBJECTIVE: We sought to develop a novel humanized anti-IL-5 receptor alpha (IL-5Ralpha) mAb with enhanced effector function (MEDI-563) that potently depletes circulating and tissue-resident eosinophils and basophils for the treatment of asthma. METHODS: We used surface plasmon resonance to determine the binding affinity of MEDI-563 to FcgammaRIIIa. Primary human eosinophils and basophils were used to demonstrate antibody-dependent cell-mediated cytotoxicity. The binding epitope of MEDI-563 on IL-5Ralpha was determined by using site-directed mutagenesis. The consequences of MEDI-563 administration on peripheral blood and bone marrow eosinophil depletion was investigated in nonhuman primates. RESULTS: MEDI-563 binds to an epitope on IL-5Ralpha that is in close proximity to the IL-5 binding site, and it inhibits IL-5-mediated cell proliferation. MEDI-563 potently induces antibody-dependent cell-mediated cytotoxicity of both eosinophils (half-maximal effective concentration = 0.9 pmol/L) and basophils (half-maximal effective concentration = 0.5 pmol/L) in vitro. In nonhuman primates MEDI-563 depletes blood eosinophils and eosinophil precursors in the bone marrow. CONCLUSIONS: MEDI-563 might provide a novel approach for the treatment of asthma through active antibody-dependent cell-mediated depletion of eosinophils and basophils rather than through passive removal of IL-5.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Eosinophils/metabolism , Epitopes/metabolism , Interleukin-5 Receptor alpha Subunit/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Antibodies, Monoclonal/adverse effects , Antibody Affinity , Antibody-Dependent Cell Cytotoxicity , Cell Count , Eosinophils/drug effects , Eosinophils/pathology , Epitope Mapping , Female , Humans , Interleukin-5 Receptor alpha Subunit/genetics , Interleukin-5 Receptor alpha Subunit/immunology , Macaca fascicularis , Male , Mutagenesis, Site-Directed , Protein Engineering , Receptors, IgG/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Surface Plasmon Resonance
4.
Cancer Immunol Immunother ; 54(12): 1172-9, 2005 Dec.
Article in English | MEDLINE | ID: mdl-15846490

ABSTRACT

Complement-dependent cytotoxicity (CDC) is a key mechanism of Rituximab (RTX) action in killing non-Hodgkin's lymphoma (NHL) cells both in vitro and probably in vivo. A DeImmunized, mouse/human chimeric monoclonal antibody (Mab), H17, specific for cell-associated complement C3 cleavage products, C3b and iC3b, was generated to enhance RTX-mediated killing of target cells by CDC. When NHL cell lines were treated with RTX and H17 in the presence of complement for 1 h, there was 40-70% more cell death than that observed with RTX alone. The enhancing effect of H17 was also seen over longer treatment periods. H17 was tested ex vivo against primary cells from NHL and chronic lymphocytic leukemia (CLL) patients. In RTX-resistant NHL samples, H17 enhanced RTX-mediated killing; in the remaining samples RTX + complement alone promoted more than 80% killing, and no significant enhancement was observed. The H17 antibody also increased RTX-mediated killing in four out of nine CLL samples. H17 may have therapeutic applications in NHL and CLL treatment as an adjunctive therapy to RTX. It might also enhance the activity of other therapeutic antibodies that work through CDC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Complement Activation , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Lymphoma, Non-Hodgkin/drug therapy , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal, Murine-Derived , Complement System Proteins/immunology , Humans , Mice , Rituximab , Tumor Cells, Cultured
5.
Curr Opin Mol Ther ; 7(2): 144-50, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15844622

ABSTRACT

Heteropolymer (HP) technology is a novel cassette technology which is being developed for the treatment of infectious and autoimmune diseases. HPs are dual antibody conjugates, composed of a monoclonal antibody (mAb) directed against the complement receptor type 1 (CR1) on primate red blood cells (RBCs) chemically cross-linked to mAbs that recognize blood-borne antigens. Upon administration of an HP, the target is bound to its counterpart mAb in the HP and immobilized on an RBC by binding of the anti-CR1 mAb to CR1 in a complement-independent manner, forming an immune complex. When the RBC traverses the liver during circulation, the immune complex is recognized by fixed tissue macrophages, the CR1 molecule is cleaved and the HP-pathogen complex is phagocytosed and destroyed. Due to rapid binding and immobilization of the target by HPs, the anti-target mAb used in the HP need not be directed to a neutralizing epitope on the target organism. Studies in animal models have shown that HPs are effective in treating infectious diseases and autoimmune diseases such as systemic lupus erythematosus. HPs are advantageous over natural immune adherence or conventional mAb therapies due to their complement-independent mechanism, low therapeutic dose and lack of the need for neutralizing mAbs against the target.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Blood-Borne Pathogens , Communicable Diseases/drug therapy , Receptors, Complement/immunology , Animals , Antibodies, Monoclonal/immunology , Antigens/immunology , Communicable Diseases/immunology , Humans , Mice , Receptors, Complement/genetics
6.
Infect Immun ; 73(2): 795-802, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15664918

ABSTRACT

We have developed a therapeutic for the treatment of anthrax using an affinity-enhanced monoclonal antibody (ETI-204) to protective antigen (PA), which is the central cell-binding component of the anthrax exotoxins. ETI-204 administered preexposure by a single intravenous injection of a dose of between 2.5 and 10 mg per animal significantly protected rabbits from a lethal aerosolized anthrax spore challenge ( approximately 60 to 450 times the 50% lethal dose of Bacillus anthracis Ames). Against a similar challenge, ETI-204 administered intramuscularly at a 20-mg dose per animal completely protected rabbits from death (100% survival). In the postexposure setting, intravenous administration of ETI-204 provided protection 24 h (8 of 10) and 36 h (5 of 10) after spore challenge. Administration at 48 h postchallenge, when 3 of 10 animals had already succumbed to anthrax infection, resulted in the survival of 3 of 7 animals (43%) for the duration of the study (28 days). Importantly, surviving ETI-204-treated animals were free of bacteremia by day 10 and remained so until the end of the studies. Only 11 of 51 ETI-204-treated rabbits had positive lung cultures at the end of the studies. Also, rabbits that were protected from inhalational anthrax by administration of ETI-204 developed significant titers of PA-specific antibodies. Presently, the sole therapeutic regimen available to treat infection by inhalation of B. anthracis spores is a 60-day course of antibiotics that is effective only if administered prior to or shortly after exposure. Based upon results reported here, ETI-204 is an effective therapy for prevention and treatment of inhalational anthrax.


Subject(s)
Anthrax/prevention & control , Antibodies, Monoclonal/immunology , Antigens, Bacterial/immunology , Bacillus anthracis/immunology , Bacterial Toxins/immunology , Animals , Anthrax/immunology , Anthrax/veterinary , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antitoxins , Blood/microbiology , Injections, Intramuscular , Rabbits , Spores, Bacterial , Time Factors
7.
Infect Immun ; 72(6): 3276-83, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15155630

ABSTRACT

We investigated the ability of using monoclonal antibodies (MAbs) against anthrax protective antigen (PA), an anthrax exotoxin component, to modulate exotoxin cytotoxic activity on target macrophage cell lines. Anthrax PA plays a critical role in the pathogenesis of Bacillus anthracis infection. PA is the cell-binding component of the two anthrax exotoxins: lethal toxin (LeTx) and edema toxin. Several MAbs that bind the PA component of LeTx are known to neutralize LeTx-mediated killing of target macrophages. Here we describe for the first time an overlooked population of anti-PA MAbs that, in contrast, function to increase the potency of LeTx against murine macrophage cell lines. The results support a possible mechanism of enhancement: binding of MAb to PA on the macrophage cell surface stabilizes the PA by interaction of MAb with macrophage Fcgamma receptors. This results in an increase in the amount of PA bound to the cell surface, which in turn leads to an enhancement in cell killing, most likely due to increased internalization of LF. Blocking of PA-receptor binding eliminates enhancement by MAb, demonstrating the importance of this step for the observed enhancement. The additional significance of these results is that, at least in mice, immunization with PA appears to elicit a poly-clonal response that has a significant prevalence of MAbs that enhance LeTx-mediated killing in macrophages.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antibody-Dependent Enhancement , Bacterial Toxins/toxicity , Macrophages/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Monoclonal/blood , Antigens, Bacterial/immunology , Bacillus anthracis/metabolism , Bacillus anthracis/pathogenicity , Bacterial Toxins/immunology , CHO Cells , Cell Line , Cricetinae , Humans , Macrophages/physiology , Mice , Receptors, Fc/metabolism , U937 Cells
8.
Clin Immunol ; 105(2): 141-54, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12482388

ABSTRACT

Autoantibodies that react with double-stranded DNA (dsDNA) are a hallmark for diagnosis of systemic lupus erythematosus (SLE) and are also considered the pathogenic subset that is most associated with lupus nephritis. As an agent to remove the pathogenic dsDNA antibodies from the circulation of SLE patients, we are developing an antigen-based heteropolymer (AHP). The AHP consists of a monoclonal antibody to the complement receptor (CR1) cross-linked to salmon testis dsDNA to effect clearance of anti-DNA antibodies by binding them to erythrocyte CR1. Utilizing a cynomolgus monkey model for SLE in which we infused plasma from SLE patients containing a high titer of high-avidity anti-dsDNA antibody, we have evaluated the safety and efficacy of AHP infusion. The results demonstrate that AHP rapidly (within 2 min of infusion) binds to monkey erythrocytes without causing any toxicological effects. We also demonstrate that human Ig (G+M) antibodies are rapidly bound to the AHP-erythrocyte complex. These events are mirrored in their kinetics by a substantial drop in the level of high-avidity dsDNA antibody in the plasma.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Lupus Erythematosus, Systemic/therapy , Animals , Antibodies, Antinuclear/blood , Antibody Affinity , Antigens , DNA/immunology , DNA/therapeutic use , Disease Models, Animal , Erythrocytes/immunology , Female , Humans , Lupus Erythematosus, Systemic/immunology , Macaca fascicularis , Male , Receptors, Complement 3b/immunology , Salmon
SELECTION OF CITATIONS
SEARCH DETAIL
...